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ABSTRACT: The generalized lattice–fluid (GLF) model is extended to predict phase
behaviors of polymer/solvent systems. The GLF model gives some difficulties in de-
scribing liquid–liquid equilibria (LLE) of binary polymer solution systems due to
general assumptions on its derivation. An extended lattice–fluid (ELF) model is pro-
posed by introducing a new universal constant (C0) and a model parameter (k11). The
proposed model is then compared with experimental data for polymer/solvent systems
and polymer1/polymer2 systems, which exhibit lower critical solution temperature
(LCST) behaviors. Theoretical predictions and experimental results are in good
agreement. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 1143–1150, 1998

Key words: extended lattice–fluid model; liquid–liquid equilibria

INTRODUCTION

A variety of polymer-solution theories have been
developed to understand the phase behavior of
polymer/solvent mixtures different from that of
ordinary liquid mixtures due to the large molec-
ular size difference of the components. Phase be-
haviors of many polymer solvent systems have
been investigated for the past several decades.
There are many different types of phase behav-
iors for polymer solutions, for example, an upper
critical solution temperature (UCST), a lower
critical solution temperature (LCST), and both
UCST and LCST. For a polymer in a poor solvent,
the typical hour-glass type of cloud-point curve is
observed.1 A phase diagram of the closed-loop
type with both UCST and LCST follows from an
orientation-dependent interaction (or specific in-
teraction), for example, a hydrogen bond.

Molecular-based thermodynamic models for
describing liquid–liquid equilibria (LLE) in poly-
mer mixtures can be divided into four categories,
each corresponding to a particular statistical me-
chanical framework: incompressible-lattice mod-
els, generalized van der Waals partition function
theories, compressible-lattice models, and off-lat-
tice (continuous-space) models of chain fluids.

The most widely used and best known of the
incompressible-lattice model is the Flory-Huggins
theory,2,3 which is based on a lattice model for
polymer solutions wherein all lattice sites are oc-
cupied by segments of molecules. A mean field
approximation was used to obtain the Helmholtz
energy of mixing DA. Much work has been done to
improve the mathematical solution of the lattice
model, including chain connectivity and nonran-
dom mixing.4 The Flory-Huggins model gives too
narrow or parabolic a liquid–liquid coexistence
curve near the critical region when compared
with experimental data.

To obtain a more accurate fit, Koningsveld and
Kleintjens5 derived a closed-form expression for
the interaction parameter considering the nearest
neighbor site-occupancy probability. Recently,
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Lambert et al.6 reported a new expression of DA
for incompressible monomer/r-mer mixtures ob-
tained by correlating the Monte-Carlo simulation
result using the quasi-chemical model. Bae et al.7

simplified the model and improved the mathe-
matical approximation defects.

Although these modified models provide some
improvements, there still are difficulties to de-
scribe phase behaviors of the systems with LCST
or with miscibility loops. If strong or oriented
interactions from hydrogen bonding or other
specific forces exist in the system, LCST or mis-
cibility loops can arise, as first indicated by
Hirschfelder et al.8 for mixtures of ordinary liq-
uids. Barker and Fock9 developed a quasi-chemi-
cal method to account for such specific interac-
tions. ten Brinke and Karasz10 have developed an
incompressible model of binary mixture with spe-
cific interactions. Furthermore, Freed et al.11–13

reported a complicated lattice field theory for
polymer solutions that is formally an exact math-
ematical solution of the Flory-Huggins lattice. Hu
et al.14,15 investigated a double-lattice model
based on Freed’s theory. Recently, Bae et al.16

reported on a modified double-lattice model by
introducing new universal parameters and sim-
plifying the expression of the Helmholtz energy of
mixing.

The above theories are all based on a closed-
packed lattice. To account for the compressibility
and change in density upon isothermal mixing,
free volume theories for polymer solutions were
developed by numerous investigations notably by
Flory17 and by Patterson and Delmas.18 These
theories were based on a generalized form of the
van der Waals partition function, which is the
product of two independent partition functions:
one accounts for free volume, and the other for
attractive forces.

Heil and Prausnitz19 and later Brandani,20,21

Vera,22 McMaster,23 and Xie24 developed a theory
taking into account local composition. Bae et
al.25–27 reported on the extended Flory-Huggins
theory for binary polymer systems. On the other
hand, the Flory-Owoll-Vrij-Eichinger (FOVE)
equation of state model7,28,29 and the lattice fluid
(LF) model of Sanchez and Lacombe30–33 ac-
counted for compressibility and volume changes.
However, neither model took into account specific
interactions and the associated entropy effect. Us-
ing the quasi-chemical approaches to treat the
nonrandom character of a solution, Panayiotou
and Vera34 and Renuncio and Prausnitz35 have
improved the FOVE model. Panayiotou34 and

Sanchez and Balazs36 generalized the LF model
to account for the specific interaction. However,
because of the basic assumption, and ignoring the
specific interaction between the pure components
in the generalized LF model (GLF), it has some
difficulties in being applied to a polymer–solvent
system. Recently, a group-contribution lattice–
fluid equation of state for the prediction of VLE
and LLE in polymer solutions was reported by
High and Danner37–39 and was modified by Lee
and Danner.40

The aim of this study is to establish an expres-
sion for the GLF free energy of mixing at zero
pressure to predict the phase separation of binary
polymer solutions. We modified the generalized
lattice–fluid model of Sanchez and Balasz and
extended the applicability of our proposed model
to the polymer/solvent systems using a universal
constant and a new adjustable model parameter.

MODEL DEVELOPMENT

The GLF Free Energy

At zero pressure, the GLF free energy, f per mer
of binary mixture, is given by Sanchez and Ba-
lazs.36 For a binary mixture of N1 molecules of
size r1 and N2 molecules of size r2 z the GLF free
energy f is

f 5 2r̃«* 2 T~Scomb 1 Svac) (1)

where r̃ is the reduced density of the mixture and
equals the fraction of occupied sites, «* is the
mixing interaction energy and is defined as

«*~f, T! 5
z
2 ~f1

2«11 1 2f1f2 f12 1 f2
2«22!

; ~f1
2«*11 1 2f1f2f *12 1 f2

2«*22! (2)

where fi is a volume fraction of the component i
and «ij is the mer–mer interaction energy be-
tween mers i and j

«*ij ;
z
2 «ij, f *12 ;

z
2 f12 (3)

f12 is the free energy parameter that replaces the
pure energetic parameter «12. It includes the spe-
cific interaction parameter d«/k and the entropy
effect generated by the specific interaction. f12 is
defined as
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f12 5 «12 1 d« 2 kT ln3
1 1 q

1 1 q expS2 d«

kTD4 (4)

where q is the number of ways that the nonspe-
cific 1–2 interaction occurs. The usual combinato-
rial entropy of mixing (Scomb) and the entropy of
mixing lattice vacancies with the molecules (Svac)
are given by

Scomb(f)52kSf1

r1
ln f1 1

f2

r2
ln f2D (5)

Svac5 2kS1 2 r̃

r̃
ln~1 2 r̃! 1

ln r̃

r D (6)

where definitions of r and fi are as follow:

1
r 5

f1

r1
1

f2

r2
, rN 5 r1N1 1 r2N2 (7)

fi 5
riNi

rN (8)

In the derivation of the number of ways V for
packing molecules on the lattice,41 V can be ex-
pressed as

V 5 VendsVr21 (9)

where Vends is the number of ways of distributing
N1 1 N2 polymer chain ends on a lattice of rN
sites; for binary system, it is given by

Vends 5
rN!

N1!N2!~rN 2 N1 2 N2!!
(10)

Using Stirling’s approximation, it reduces to

Vends 5 S r1

f1
DN1Sr2

f2
DN2S1 2

1
rD

2 rN~1 2 ~1/r!!

(11)

If r1 and r2 are both large, r is large for all
compositions by Eq. (7), and we can make use of

lim
r3 `

S1 1
a
nD

n

5 ea to obtain

S1 2
1
rD

2 rN~1 2 ~1/r!!

> eN~1 2 ~1/r!! > eN

and it gives

Vends 5 Sr1e
f1

DN1Sr2e
f2

DN2

(12)

Vr 2 1 is the number of ways that the remaining r1
2 1 mers of each molecule 1 and r2 2 1 mers of
each molecule 2 can be placed and is given by41

Vr 2 1 5 ~d1 P
l51

r121

Pl!
N1~d2 P

k51

r221

Pk!
N2 (13)

where di is a parameter that is defined as

di 5
z
s

~z 2 1!ri 2 2 (14)

and pk is a probability that a nearest-neighbor
site is vacant and is available for the continuation
of the random walk at kth step. To calculate pk,
the large z or Flory’s approximation is used. Then
pk is equal to the fraction of empty sites available
at the kth step. At the kth step,

kN2 1 lN1 5 S k
r2
D ~r2N2 1 r1N1! 5 S k

r2
DrN,

S l 5
r1

r2
kD (15)

This means that (k/r2)rN lattice sites are oc-
cupied and (1 2 k/r2)rN sites are vacant. There-
fore, the probability pk is given by

Pk 5

S1 2
k
r2
DrN

rN 5 1 2
k
r2

,

Pl 5 1 2
l
r1

5 1 2 Skr1/r2

r1
D 5 Pk (16)

Using Stirling’s approximation, the probabili-
ties reduce to

P
k51

r221

Pk 5 P
k51

r221 S1 2
k
r2
D 5

r2!
r2

r2 > e2r2 (17.1)

P
l51

r121

Pl 5 P
l51

r121 S1 2
l
r1
D 5

r1!
r1

r1 > e2r1 (17.2)
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As listed in Table I, the size parameters r of the
most solvents are smaller than 15. If we take
Stirling’s approximation in the calculation of
probability Pk, it will give a serious error, because
Stirling’s approximation applies only to large
r(r @ 1). Similarly, in calculation of Vends,

S1 2
1
rD

2rN~1 2 ~1/r!!

cannot be reduced to eN. Therefore, the model
presents a serious problem when we apply it to
the polymer/solvent systems. To avoid the defect,
we introduce a new universal parameter C0

r# 1 5 C0r1,
1
r# 5

f1

r# 1
1

f2

r2
(18)

In a later section, we will discuss how C0 can be
determined as a universal constant. In the GLF
model, the effect of a specific interaction between
pure components is ignored. To consider the pos-
sibility of a specific interaction among pure com-
ponents, we introduce an adjustable model pa-
rameter, k11, which determines the deviation of
the characteristic parameters at low pressure
conditions.

The extended lattice fluid (ELF) model is then
given by

fE 5 2r̃«* 2 T~Scomb 1 Svac) (19)

«*~f, T!

5 ~f1
2«*11~1 2 k11! 1 2f1f2 f *12 1 f2

2«*22! (20)

Scomb~f! 5 2kSf1

r# 1
ln f1 1

f2

r2
ln f2D (21)

Svac 5 2kS1 2 r̃

r̃
ln~1 2 r̃! 1

ln r̃

r# D (22)

If there is no deviation of the characteristic pa-
rameter associated with the interaction energy
(i.e., k11 5 0) and both r1 and r2 are large enough
(i.e., C0 5 1) (e.g., polymer/polymer system), the
ELF model reduces to the GLF model.

The Equilibrium Value of r̃

In the GLF model, r̃ is considered to be a constant
for the calculation of its chemical potential. In the
ELF model, the equation of state at zero pressure,

S f
r̃D

f

5 0,

determines the value r̃, which can be calculated
numerically.

r̃2b«* 1 ln~1 2 r̃! 1 S1 2
1
r# D r̃ 5 0, b 5

1
kT (23)

Correlating Equations

For the prediction of a binary coexistence phase
diagram, we need a chemical potential of each
component. The chemical potential for component
1 is given by42

m1 5 r1@fE 1 f2~dfE/df1!# (24)

dfE

df1
5

fE

f1
1

fE

r̃
z

r̃

f1
(25)

Because r̃ is a function of composition, we can
get the value of (r̃/f1) from eq. (23) by taking
the partial differential with respect to f1.

r̃

f1
5 2

r̃2b
«*
f1

2 S 1
r# 1

2
1
r2
D r̃

2r̃b«* 1
1

r̃ 2 1 1 S1 2
1
r# D

(26)

From eqs. (24), (25), and (26), the chemical
potential is expressed by

bm1 5 ln f1 1 S1 2
r# 1

r2
Df2 2

1
2 r# 1r̃b

d2«*
df1

f2
2

1 r# 1F2r̃b«11~1 2 k11! 1
1 2 r̃

r̃
ln~1 2 r̃! 1

ln r̃

r# 1
G

1 r# 1F2b«* 2
ln~1 2 r̃!

r̃2 1 S1
r# 2 1D 1

r̃G (27)

Table I Lattice Fluid Equation
of State Parameters41

Fluid
T*
(K)

P*
(Mpa)

r*
(kg/m3) r

Methane 224 248 500 4.26
Pentane 441 310 755 8.09
Diethylether 431 363 870 8.62
Cyclohexane 517 391 917 8.14
Tetrahydrofuran 498 479 1019 8.18
Ethyl acetate 468 458 1052 9.87
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m2 is obtained by interchanging index 1 and 2. In
the GLF model, r̃ is considered as a constant,
while in the ELF model, r̃ is a function of compo-
sition, as first suggested by Sanchez and Balazs.36

Critical Point

The critical condition is given by

dm

df2
5

d2m

df2
2 5 0, or

d2fE

df2
2 5

d3fE

df2
3 5 0 (28)

d2fE

df2
2 5

2fE

f2
2 1

2fE

f2r̃
z

r̃

f2
5 0, S{

fE

f2
5 0D (29)

d3fE

df2
3 5

3fE

f2
3 1

3fE

f2
2r̃

z
r̃

f2

1 S 3fE

f2
2r̃

1
3fE

f2r̃2 z
r̃

f2
D z

r̃

f2

1
2r̃

f2
2 z

2fE

f2r̃
5 0 (30)

The value of 2r̃/f2
2 can be calculated from eq.

(26)

2r̃

f2
2 5 2

A
B (31)

A 5
r̃

f2
S2r̃b z

«*
f2

1 2b«* z
r̃

f2

1
1

~r̃ 2 1!2 z
r̃

f2
1

1
r# 1

2
1
r2
D 1 2r̃b

«*
f2

3
r̃

f2
1 r̃2b z

2«*
f2

2 1 S 1
r# 1

2
1
r2
D r̃

f2
(31.1)

B 5 2r̃b«* 1
1

r̃ 2 1 1 S1 2
1
r# D (31.2)

RESULTS AND DISCUSSIONS

In this study, we introduce a new adjustable
model parameter, k11, and a universal constant,
C0, to extend the GLF model to a polymer/solvent
system. Our proposed ELF model has three ad-
justable model parameters, «12, d«, and k11.

Figures 1 and 2 show a phase diagram of PS
(polystyrene, Mw 5 100,000) in an ethyl acetate

system. Open circles are cloud point data by Bae
et al.26 Figure 1 represents how the universal
constant, C0, can be determined. As we discussed
previously, the GLF model is good for polymer
blends due to their approximation in eqs. (17.1)
and (17.2). As shown in Figure 1, the spinodal
curve converges to the expected critical point as
C0 value increases to 100. In this study, we fix C0
at 100 for any polymer/solvent systems. Though
we tested the C0 value only for the PS/ethyl ace-
tate system, the proposed model with C0 5 100
gives good agreement for the PMMA/solvent sys-
tems, as shown in Figures 4 and 5.

Figure 2 represents the comparison of the GLF
model, with the ELF model for the PS/ethyl ace-
tate system. The GLF model gives a serious devi-
ation from experimental data, while the ELF
model agrees very well with the experimental
results. The adjustable model parameter values
are «*12/k 5 646.40 K, d«*/k 5 217.09 K, and
k11 5 20.4157 for the ELF model and «*12/k
5 673.161 K, d«*/k 5 264.66 K for the GLF
model. The GLF model gives a negative values for

Figure 1 Spinodal curves for the PS (polystyrene,
Mw 5 100,000)/ethyl acetate system. Spinodal curves
are calculated from this work in each cases. The open
circles are experimental data by Bae et al.26
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d«*/k, while the ELF model gives a positive d«*/k
value, as we expected. If a value of k11 5 20.4157
is considered, it implies that «*11 from the GLF
model is underestimated by about 41%.

Figure 3 shows coexistence curve for the PS
(polystyrene, Mw 5 50,000)/PVME (Poly (vinyl
methyl ether), Mw 5 99,000) system. The system
exhibits LCST behavior. The solid line is a
binodal curve predicted by this work. Open circles
are experimental data by Bae et al.25 In this sys-
tem, C0 is fixed as a unity. The theoretical pre-
diction agrees well with the experimental data.
The adjustable model parameter values are «*12/k
5 670.82 K, d«*/k 5 156.01 K, and k11 5 0.035. If
a value of k11 5 0.035 is considered, «*11 from the
GLF model is very close to a real value. It implies
that the GLF model gives excellent agreement for
this polymer blend system.

Figure 4 shows the coexistence curve for the
PMMA (poly(methyl methacrylate), Mw 5 37,109)/

ethyl acetate system. The system also exhibits
LCST behavior. The solid line is calculated by this
work with C0 5 100. Open circles are experimen-
tal data by Muller.43 The adjustable model pa-
rameter values are «*12/k 5 566.01 K, d«*/k
5 892.38 K, and k11 5 20.3936. Considering a
value of k11 5 20.3936, «*11 for the system from
the GLF model is underestimated at about 40%
less than that of the real value.

Figure 5 shows phase behavior of the PMMA
(poly(methyl methacrylate), Mw 5 37,109)/THF
(tetrahydrofuran) system and it exhibits LCST
behavior. The solid line is a binodal curve pre-
dicted by this work with C0 5 100. Open circles
are experimental data by Muller.43 The adjust-
able model parameter values are «*12/k 5 402.51
K, d«*/k 5 2110.97 K, and k11 5 20.1490. If we
consider a value of k11 5 20.1490, «*11 for the
system from the GLF model is underestimated by
about 15%.

In this study, we considered k11 to take into
account the specific interaction among component

Figure 3 Binodal curves calculated by this work for
the poly (vinyl methyl ether) (PVME) (Mw 5 99,000)/
polystyrene (Mw 5 50,000) system. The solid line is the
binodal curve calculated by this work with «*12/k
5 670.82 K, d«*/k 5 156.01 K, and k11 5 0.035. C0 5 1
for a polymer1/polymer2 system. Open circles are cloud
points from Bae et al.’s experimental data.26

Figure 2 Comparison of phase diagrams calculated
from this work and the GLF model for the PS (poly-
styrene, Mw 5 100,000)/ethyl acetate system. The
solid line is the binodal curve calculated form this work
with «*12/k 5 646.40 K, d«*/k 5 217.09 K, and
k11 5 20.4157. The dotted line is the spinodal by this
work. The spinodal by GLF with «*12/k 5 673.16 K,
d«* 5 264.66 K, showing large deviation from the exper-
imental data.26
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1. This is because «*11 is much more sensitive in
the calculation of critical point than that of «*22.

CONCLUSIONS

We proposed an extended lattice fluid (ELF)
model by introducing a new universal constant
(C0) and a new model parameter (k11). The GLF
model gives excellent agreement for polymer
blend systems. However, it shows a serious devi-
ation for the prediction of polymer/solvent sys-
tems. In the ELF model, we fix a universal con-
stant C0 5 100 for polymer/solvent systems and
add a new adjustable model parameter k11. The
proposed ELF model predicts and describes phase
behaviors of polymer/solvent systems remarkably
well. The ELF model reduce to the GLF model
when we take C0 5 1 and k11 5 0. The ELF model
presented here is essentially semiempirical. Its
advantage follows from its simplicity: a simple

modification appears to be suitable for represent-
ing phase behaviors of polymer/solvent systems.
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